
Mixed-valence state treatment for X-ray emission spectra of cuprate superconductors

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys.: Condens. Matter 6 8349

(http://iopscience.iop.org/0953-8984/6/40/026)

Download details:

IP Address: 171.66.16.151

The article was downloaded on 12/05/2010 at 20:44

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/6/40
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys.: Candens. Matter 6 (1994) 834943361, Printed in the UK 

Mixed-valence state treatment for x-ray emission spectra of 
cuprate superconductors 

A Bemotast, Ch Froese Fischerf, J Kaniauskast and V Tutlyst 
t Institute of Theoretical Physics and Astronomy, A GoPtauto 12,2600 Vilnius. Lithuania 
$ Vanderbilt University, Box 16798, Nashville, TN 37235. USA 

Received 18 March 1994. in final form 12 luly 1994 

Abstract. In the investigation reported here the System of all electrons in a solid is divided 
into two different subsystems. One of the subsystems consists of well localized electrons and 
the other of itinerant electrons, a division common for solids. Electron interchange between the 
subsystems is allowed. The expression for each matrix element of any operator acting upon 
electronic states can then be viewed as a sum of matrix elements corresponding to component 
subsystems and a hopping (hybridization) matrix element. It is clearthat the basic representations 
for the subsystems can be freely and independently changed. AAer a general introduction the 
Smcture of an infinite matrix of the Hamiltonian is discussed and ways of simplifying it are 
mentioned. The theory is then applied after the conditions of a particular problem are detailed. 
The case is one of localized electrons described by only atomic-physics methods, but nevertheless 
elaborate ones. The algorithm and computer programs used in the calculations of maaix elements 
are specified. While dealing with the Cu 2p x-ray emission spectra (XES) intensity cuwes as 
an illustration, it is shown that such an 'atom in an environment' model comes close to the 
situation reported in experiment when the inner vacancy of an atom is filled up theoretically 
with electrons only from the ground state of a configuration with a vacancy. 

1. Introduction 

The individual properties of different atoms and ions are of varying importance in different 
models of solids. The interplay of intra- and interatomic interactions leads to a situation 
where electrons, once in a free atom bound to their own nucleus, either stay bound or 
become itinerant in a solid. The electrons closer to the nucleus more or less retain their 
localization, while the delocalization refers mainly to the outer shell electrons. Different 
energies are characteristic of those different groups of electrons, so different models and 
methods of investigation are applied for the localized and the itinerant electrons. This 
problem has been recently reviewed in a paper by Vonsovskiy and co-workers [I], where 
the physical basis is discussed in detail and a vast list of relevant literature is presented. 

The formal subdivision of electrons in a many-particle quantum system into groups, 
each containing different kinds of electrons, leads one to the following expression for a 
wavefunction: 

[ A ;  N )  = {A)C [ai; i)lai;~N - i)(ai, a:IA) (1.1) 
i a;,o,! 

where the wavefunctions [ai; i) and la;; N - i) correspond to the entities of localized 
and delocalized states respectively, (ai, allA) is the mixing and [ A )  is a normalization 
factor. Hereafter, we use capital letters for general characteristics of the whole system, 
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while small letters mark the parameters of subsystems. The characteristics of delocalized 
electron subsystems are primed. While representing the wavefunctions by I : ) we denote 
the additional parameters of a particular state with the first letter, and the letter after the 
semicolon means the number of particles. 

The mahix elements of an operator acting upon electron states, in the basis of functions 
&I), are obviously expressed as a superposition of results for atomic (localized electrons) 
and environmental (delocalized electrons, at least with respect to the atom chosen) parts, 
with additional terms corresponding to the interchange of electrons between the subsystems. 
The analogous expressions, though differing sometimes in detail and level of simplification, 
are well known and widely used. From those general expressions the quantitative results 
are difficult to obtain, unless the conditions of a problem are detailed in such a way that 
the parametrization or the elimination of particular terms is plausible. 

The idea of incorporating well developed methods of atomic structure calculations into 
descriptions of solid state properties seems promising and is welcomed [Z, 31. Both localized 
and delocalized electrons should be accounted for, as already pointed out by Slater [4]. In 
section 2, therefore, we concentrate on the atomic part of the problem. in an attempt to 
make a closer link between the methods used in atomic and condensed matter physics. 
The treatment presented there is close to the Anderson impurity Hamiltonian model [5- 
81, the essence of which is in the above-mentioned separation of states. There, a similar 
decomposition of the Hamiltonian is possible, in order to single out the atomic, valence 
and mixed parts [9], and the atomic part may be estimated by using existing computer 
programs [lo, 111. Despite that similarity, we wish to stress that the results are obtained by 
deforming in some way the solutions of two separate problems, the factor of this deformation 
being the off-diagonal matrix element that mixes two atomic subsystems of different valence. 

In section 3, the case when the atomic part dominates is treated in detail. We describe our 
theoretical investigation of x-ray emission spectra (XES) for high-Tc cuprate superconductors. 
The results obtained by various authors in the past few years in superconductivity and 
copper oxide compounds fields [9,12,13J provide us with a good basis for reference and 
comparison. Of particular interest is the fundamental significance attributed to the existence 
of different configurations for an atomic Cu subsystem in high-?; phenomena [9,14,15], 
and this very property is incorporated into our developments. 

In an investigation of a specific 
compound, details of the method used and the values of parameters must be defined more 
exactly. Those, however, are the perspectives of future investigation, which are mentioned 
briefly in section 4, along with some conclusions based on our XES investigation. 

Here we investigate a system consisting of electrons of two kinds, which is described 
by the Anderson model only under some limiting conditions. Therefore, in defining the 
parameters we tried to keep to the matrix representation inherent in the atomic ab initio 
methods, where the origin of those parameters is easily traced. In the appendix we discuss 
the explicit expressions for matrix elements of the energy operator. 

The results presented here are only qualitative. 

2. Calculation algorithm 

For the many-electron system under investigation, we decompose the matrix element of 
any operator into three parts: atomic, environment and mixed. The decomposition for a 
Hamiltonian operator is presented in detail in  the appendix. We then pass over to the 
submatrix elements (i.e. the factors of matrix elements that are independent of angular 
momenta projections), in order to make effective use of an atomic Hartree-Fock computer 
program [ll].  
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In the energy matrix, the atomic submatrix elements form a quasidiagonal matrix, which 
we fill according to the following scheme. First, we define the blocks with fixed particle 
numbers i in the atomic subsystem. Then, inside these blocks, the sequences of atomic 
matrices with definite total angular momenta are placed on the diagonals. The sequences 
are repeated as many times as there are states in the complementary subsystem. 

The matrix elements (A9) of a primed subsystem (the environment) are defined in the 
diagonal blocks with respect to the number of particles i ,  and generally are situated on the 
diagonals of blocks that connect the same atomic configurations. It is convenient to move 
to the eigenfunctions for this subsystem, such that 

(2.1) 

In this basis the matrix elements for the primed subsystem E'(efJ / ;  N - i )  depend only 
upon the properties of this subsystem, and they should be added to the corresponding 
atomic subsystem's diagonal elements. It is hard to calculate E' from first principles, but it 
may be estimated fairly well by investigating energy spectra of similar compounds. 

The matrix elements of the operator Ha, (see (Al)) generally fill all the matrix. 
Approximately, they may be considered to be equal inside a block of the matrix that is 
associated with the subsystem having one more or one fewer particle, another block for two 
more or two fewer particles, and so on. This means that we consider this interaction only 
as an effective one, averaged over the influence of particular states. 

The energy matrix obtained in this way should be infinite. In practice we can deal only 
with a finite energy matrix, and with discrete energies. Although the number of stam of 
itinerant electrons is almost infinite, their energies change in a relatively narrow continuous 
interval. This infinity of continuum is replaced by a finite set. The energy interval is 
discretized by choosing several essential reference points. This choice depends on the 
model and the problem solved; we have to point out here, however, -that the reference 
points generally do not represent real concrete states but only some effective averaged 
states. Also, the order of the matrix is reduced by imposing a physical limit on the number 
of panicles hopping between the atom and the environment. The energy needed for such 
excitations may then be considered as well as the finite number of electrons in a shell. 
So only one, or just a few, atomic configurations remain, and both the calculations and 
interpretation may be simplified. 

After such approximations are made, the expression for a wavefunction (see (A4)) 
contains several terms in a sum over i .  In the case of copper compounds, the maximum 
rank of matrix that we had to deal with was 14. 

The limitations imposed by us make this problem analogous to the Anderson impurity 
model. That allows us to make use of the numerous results by other authors, in comparing 
both the initial parameters (input) and the output. 

The values of radial integrals calculated for free ions are diminishing and have been used 
in solid state models [16,17]. The diminishing is due to the environment field. The exact 
solution of Hatree-Fock equations is not quite so straightforward here as for free atoms 
and ions, because other factors should also be taken into account (i.e. the existence of the 
environment and its point symmetry, as in cluster method calculations [9,18]). Therefore 
we choose a simpler method, described below. 

The multiplicity of states of the atomic subsystem arises from the electrons that are in 
the open shells. Usually these are the outer electron shells, and their contribution to the 
total energy of the subsystem is smaller than that of the inner ones, especially for the heavy 
elements. So 

Ha,lejJ;'M:; N - i )  = E'(eiJ/; N - i)leiJ;kfL; N - i ) .  

Ek =Eo+ek EO>> ek (2.2) 
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where Eo is a reference point (an average, the lowest-lying state, etc.) from which the 
energy ek of a particular state is measured. The ex, after being exactly determined in 
the framework of the chosen atomic model, may be modified in some way. The energy 
of the state under investigation is therefore relatively near to the reference energy point 
and, depending on the external conditions (for example, after accounting for the dielectric 
screening of interaction in solids), may change slightly. We adopt that approximation and 
modify the expression (3.9) by introducing an additional screening factor c: 

In practice, this is canied out by multiplying by c all the off-diagonal matrix elements of 
the atomic subsystem (after diagonalization they contribute to ek), and by applying (3.10) 
for the diagonal ones. The matrix elements of the itinerant electron subsystem are adjusted 
parameters here, so their scaling makes no sense. The similar different scaling of radial 
integrals contributing to the diagonal and the off-diagonal matrix elements respectively, is 
used in [19], for example. 

We notice that such scaling brings to a point the interval of states considered when c 
approaches zero. The multiplicity effects in the spectra investigated disappear, and one may 
get the results obtained with the corresponding traditional model Hamiltonians. 

Further simplifications may occur as the conditions of a particular problem are specified. 
That is the case in x-ray transition investigations, when we choose the usual one-electron 
operator of the electric dipole transition approximation. The initial and final states in the 
process differ by a strong excitation (a vacancy in the inner shell) in the atomic part, i.e. 
the states of the atomic subsystem are different. The S(b. a.)  appearing then eliminates the 
matrix elements (of (A9) type, see the appendix) of the itinerant electron subsystem. We 
express the remnant, which is an atomic part of the electric dipole transition operator T(') ,  
as 

J ' .  _' 

In comparison with the expressions known in atomic theory, this formula has an additional 
summation over the number of electrons in the atomic subsystem i, and the single product 
of weight coefficients is replaced by a sum of their products. 

The intensity I ( w )  of multipole radiation is proportional to the second power of the 
matrix element of the transition operator, and the frequency w corresponds to the difference 
in energies of initial li) and final ( f l  states: 

I@) I(flpl0l2W - Ef + Ei). (2.5) 

This formula describes a linear spectrum. In solids, because of the uncertainties, the lines 
turn into contours, and that is represented by the replacement 

S(W - Er + Ei)  + L(o - E, + Ei) (2.6) 

where L ( x )  stands for the contour of a line. 
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3. XES for Cu in an environment 

We illustrate the proposed scheme with a rather simple example of the calculation of x-ray 
emission spectra for cuprate superconductors. As indicated by numerous investigations of 
those systems, and as mentioned at the beginning of this paper, the existence of different 
atomic configurations .for Cu has great significance. One can hope that the method of 
essentially superposing these configurations should be effective for the superconducting 
compounds. On the other hand, in comparison with lanthanides where similar effects are 
reported [2,6,17,20], the d-electron systems investigated here are much simpler, and that 
reduces the irrelevant difficulties, which are mostly technical. 

First, we point out once more that the main role in superconductivity of such compounds 
is played by the CuOz planes rather than other chemical elements, as indicated by structural 
analysis (see, for example, [21]) and other investigations. The considerable anisotropy of 
conductivity leads us to the idea that the interchange of electrons between the planes and 
their surroundings is not big, and therefore we can treat the planes as closed systems with 
a fixed number of particles. 

Second, a comparison of x-ray spectra of various compounds [9,18,22]) allows us to 
come to the conclusion that Cu in the investigated materials retains its individual properties 
and it may be plausible to treat it as a separate subsystem. The other itinerant electron 
subsystem consists of the delocalized 0 2p electrons in the Cu environment. 

In accordance with our approach the states of the compound are described by 
the products of wavefunctions for Cu and its environment. As indicated by other 
investigations 19,151, the Cu atom here has lost two of its electrons, so its outer shell 
configuration is 3d9. The environment, in tum, has a filled valence band that consists of 
delocalized one-particle states for oxygen 2p electrons. This configuration of the CuOz 
plane is 3d9L0(= 3d9), where the underline marks holes (in the valence band, in this case) 
and the upper index is the number of them. By taking into account only the interchange of 
Cu 3d and 0 2p electrons, we can add to this configuration only one other, namely 3d'OL. 

In the x-ray emission process the initial state has a vacancy in the inner shell (in our 
case it is Cu 2p), which is accessed by removing one electron from there. We describe this 
state by the fogowing superposition: 

2p3d"L + 2p3d9. - (3.1) 

The inner vacancy is filled up with electrons in a relatively short time, and the excessive 
energy is emitted as an x-ray quantum. The final state for this process is 

3d97, + 3d'OLZ + 3d8. (3.2) 

The atomic part of the energy matrix for the system under investigation has been 
determined using the program by Froese Fischer [ll] and by introducing the screening 
factor c (see (2.4)). The calculated average energy of the configuration has been used for 
the reference point EO. The initial numerical values of the itinerant electron subsystem and 
the hybridization matrix elements have been evaluated as given in [ 18,22,23] and adjusted 
in the course of later calculations, paying attention to the shape of the curves obtained as 
a result. The number of discretization points has been chosen to be unity. The matrix 
formed according to the scheme described earlier is diagonalized, and the eigenvalues are 
sorted into ascending order. This last point is of use when dealing with particular parts of 
the spectrum. The numerical values of the parameters used, and the results obtained, are 
presented in the corresponding tables and graphs. 
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By knowing the energy spectra and by accounting for only the selection rules defined 
by the atomic dipole transition, we obtain the following permitted transitions: 

2p3d"L - + 3d9L =2p3d9 - 4 3d8. (3.3) 

Their matrix elements are described by (A8) and calculated mainly by the Froese Fischer 
program [ I l l  with some additional manipulations. Then, after using (2.5) and bearing in 
mind the considerations accompanying it, the intensity curves for Cu XES have been drawn. 
The curves have been obtained incorporating both the complete spechum of the initial state 
(3.1) and only its lower-lying part. 

Table 1. Some of the atomic parameters determined via ob initio c a l c u l a t i ~ ~  for different 
atomic ~ n f i g u r a t i o ~ .  E.: average energy of the configuration, from 3d'O; E,: energy of the 
ground state, from 3d": W,: width of the configuration energy specm: K-: total number of 
states in a configuration. 

3dL0 3d9 3ds 2~3d'O 203d9 

E, (eV) 0.00 17.31 53.14 955.86 993.79 
E. (eV) 0.00 17.17 50.45 949.30 983.36 e (eV) 0.00 0.35 ~ 9.17 19.65 23.40 
K" 1 2 9 2 12 

Table 2. The values of adjusted parameters for the calculated spectral c w a  

c (2.4) 1 (A10) Shape Halfwidth 

0.8 2.6eV Lorentzian 0.91eV 

0.6 L 
0 10 20 -0 

Energy level (ev) 

Figure 1. Initial-stage configuration weights as 
functions of the energy levels from the ground state. 
Calculations w e  performed under the conditions gjven 
in table 2. 

t=o.o 
. I l l -  

0 40 80 I20 
Energy level (ev) 

Figure 2. Initial-stage canfiymion 2p3d"L weight as 
a function of the energ) lrrels for difimnt 1: ue shift 
the p p h s  upusddr x I mieases 
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Figure 3. Final-stage configuration weights as func- 
tions of the energy levels from the ground am. Cal- 
culations were performed under the conditions given in 
table 2. 

Energy (eV) 

Figure 5. Cu La emission spectra for the different 
number of levels K at the initial stage. The main peak 
is moved to 929.7 eV. The other conditions are as given 
in table 2. 

" ' i id 
1, , , , , , , , \ . t = O  0 
0 40 so 

Energy level (ev) 

Figure 4. Final-stage c o n f i g d o n  3d9& weight as a 
function of energy levels for different 1 ;  we shift the 
graphs upwards as f increases. 

Energy (49 

Figure 6. Cu Ln XES for La$2uOd and three 
superconducting cuprates from [ZZ]. 
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The energy spectra obtained are presented in table 1 (atomic configuration parameters), 
table 2 (values of adjusted parameters) and figures 1-4. In figure 1 the contribution of the 
initial-state configuration upon the system energy is shown, and in figure 2 the effect of 
different hybridization magnitudes V is shown. Figures 3 and 4 are the analogous curves for 
the final-state configurations. There the contribution of a configuration is measured by the 
probability of its appearance in the state under consideration, and is calculated by summing 
the squares of the corresponding weight factors: 

The dependence of Cu Zp XES upon the number K of levels considered in the initial 
state of the radiation transition is presented in figure 5 .  The experimental data from [22] 
is reproduced in figure 6. The shape of the calculated spectra at different values of the 
hybridization matrix element is shown in figure 7. 

t=5.0 

t=3.0 

t=2.5 

t=2 0 

Energy (eV) 
F q e  7. Cu La emission spectra for the different t magnitudes. The number of levels at the 
initial stage K = 1. The other conditions are as in table 2. 

The complex curve of XES intensity obtained in a standard way (figure 5 ,  upper 
curve) only vaguely resemble the experimental data from [22,24] (figure 6). The closest 
resemblance is achieved in the lowest curve of figure 5,  where it is assumed that the 
system is already in the ground state (with a Zp vacancy) at the initial stage of the process. 
Physically, this could mean that the lifetimes of excited states are much shorter than that of 
the ground state, so they decay quickly and the x-ray emission is observed only from the 
lowest state. In comparing this result with the energy spectrum calculation (figure 1) we 
see that the first two atomic levels are considerably separated from the other ones, and they 
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are fairly well ascribed to the 2p3d1'I, configuration. The weight of the opposing 2p3d9 
configuration is only 0.06. As 6 r  the remaining 12 levels, they cluster into two groups 
with the energy interval between them similar to that between the first two levels. Here 
the configuration mixing is stronger, and the Zp3d9 configuration dominates. The picture 
for the final stage of the process is even more complex (figure 3). Here, the lowest-lying 
state (in contrast to [9]) belongs to the 3d"L2 configuration, but it does not contribute to 
the results because according to (3.3) there are no dipole transitions to it. Again, because 
of the same reason, the further two levels may be treated as belonging to 3d9L, despite the 
considerable admixture of 3d"L2. The remaining cluster of levels at a distance of some 
34 eV from the former ones belong to the 3d8 configuration. 

The electric dipole transition is thus identified as that from the ground state of 2p3d1°L 
to the two already mentioned levels of 3d9L, with the following characteristics: 

- 

(i) Main line om = 929.7eV. I (@,)  = 1.000: 

77%(0.927, 2p3dI0L, - 1, 1.5) + (0.444,3d9L. 3,2.5) 

35%(0.927, 2p3d1'L, - 1, 1.5) --+ (0.556.3d.9&, 3, 1.5) 

- 14%(0.014, 2p3dloL, - 1,0.5) + (0.556, 3d9L, 3, 1.5). 

(ii) Satellite line w, = 931.96eV, 

150%~(0.927,2p3d'~L, - 1,1.5) --f (0.494, 3d9L.2,2.5) 

- 54%(0.927, 2p3di0L, - 1, 1.5) + (0.383, 3d9L, 2, 1.5) 

21%(0.014, 2p3di0L. - 1,0.5) -+ (0.383,3d9L,2, 1.5). 

= 0.298: 

Here the intensities are expressed in relative units so that the main maximum is normalized to 
unity. The percentage is a contribution of an atomic component to the transition investigated, 
and it is obtained from the expansion coefficient matrix for the total wavefunction. Since in 
the algorithm used by us the matrix elements are summed before squaring them to obtain the 
intensities, the contribution of a particular component may appear to be negative. The sum 
of all the existing percentages for a single transition is 100%. The minor contributions of 
other components are not presented (the tolerance parameter, the ratio of a matrix element 
to the leading one, is less than 0.01 for them). The parameters of levels (in brackets) are 
the weight of a configuration in a level, the configuration itself, the sequence number of a 
level and the resulting J. 

The account for the second energy level belonging to  the^ configuration 2p3d'OL (figure 1) 
in this investigation (figure 5, curve K = 2) leads us to an additional mu%" belonging 
to the transitions between the same configurations, 2p3d'OL -+ 3d9L. The further levels 
are ascribed to the configuration 2p3d9, so they corresiond to the transitions 2p3d9 t 3d8. 
These transitions are observed in &e same region as the previously mentionea ones, and so 
they only modify the existing form and intensity. That happens because the energy interval 
between the level clusters of 2p3d9 configuration is much the same as between the levels 
of the first, 2p3d1'1, configurat& which identify the separated maxima. 

As one may notice in figures 2 and 4, the influence of the hybridization matrix element 
magnitude upon the energy spectra is predictable. Only the width of the spectrum increases 
with increasing the parameter V ,  while the relative positions and weights of the levels 
change only slightly. The changes in relative radiation intensities that occur (figure 7) 
suggest that there is an interval of V between 2-3eV, where an experimental peculiarity, a 
satellite line present on the right-hand side 0f.a maximum and close to it, is observed. 
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4. Conclusions 

The simple model of accounting for both localized and delocalized electron states in solids 
is the Anderson impurity model, when both kinds of states are parametrized. The numerous 
practical applications of this model resulted in successful reproduction of experimental data. 
Furthermore, peculiarities that are observed may be obtained by increasing the number of 
parameters. We have started from a different point of view here: the atomic states are 
determined by the ab initio methods of contemporary atomic physics, and the qualitative 
influence of the environment (which is parametrized) upon those states is theoretically 
investigated. After a number of assumptions we have arrived at expressions that are 
analogous to those obtained from the Anderson model, but the atomic part is not concealed 
behind parameters and can be traced still further by investigating the physical phenomena, 
as has been illustrated here with an XES example. 

Two opinions on the process of x-ray emission in solids may be found in the 
literature [Z]. One side says that after an electron from an inner shell state is emptied, all 
the excited states that appear participate in the radiation. The other side tells us that it is 
a two-stage process, where the system in the first stage relaxes to the lowest-lying excited 
state, and only then does the emission from that state occur. By assuming the nature of that 
radiation to be purely atomic, and by knowing the positions of energy levels, we are able to 
check both pictures in the framework of our approach. Our results (figure 5) indicate that 
in the case of Cu compounds the two-stage hypothesis is more plausible. The final word 
belongs to the complex investigations involving several phenomena in the same compounds, 
in a similar fashion to [26]. 

The investigation presented here is a simplified case. In order to obtain more accurate 
results one should account for more factors. Here we wish to make a few comments 
regarding possible modifications to our approach. 

First, by approximating the magnitude of the hybridization matrix element with a 
single parameter, we have actually investigated an average influence of different atomic 
configurations upon one another. There are serious reasons to believe the effect of mixing 
valences to be different for different states. These differences may decide a number 
of physical effects that are masked by the averaging. It may appear that a tensorial 
representation of the operator is of use here, which easily generates the selection rules. 
However, problems may occur with the discretized states of the itinerant electrons, which 
are described by some generalized characteristics. 

Second, the reduction of the interaction realized by (2.3) is a crude way of modifying 
the states of atomic valence electrons. Another possible way is related to the location of 
states in the vicinity of a reference point. The practical application of the latter in the atomic 
calculation scheme proposed here means the modification or introduction of new angular 
coefficients for the radial integrals. The physical reason for this is the point symmetry of 
the lattice. 

Third, in the x-ray spectra investigation we have eliminated the major part of the 
environmental influences, leaving only an averaged contribution. An opposite approach 
is also possible, where attention is paid to the properties of delocalized electrons, and the 
atom is evaluated in few parameters. Either approach is inevitable in an investigation of 
systems where the role of electrons of both kinds (bound and delocalized) is comparable. 
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Appendix 

In order to apply the traditional methods of precise atomic cdculations (see, for 
example, [27]) and use existing computer programs [IO, 111 to the scheme proposed in 
section 2, we base our approach upon the ‘atom in the environment’ picture. The 
wavefunction of the atomic bound electrons (non-primed subsystem) is an eigenfunction 
of angular momentum: 

aiJjMi -+ ai. (AI) 

The spherical symmeby is not characteristic of the itinerant electron @rimed) subsystem 
wavefunction. However, due to the pre-determined procedure of computation, the 
momentum and its projection for that system must be well defined. We therefore choose 
the following representation: 

where, unlike the atomic subsystem wavefunction, we must take a sum instead of a single 
term. By putting these two transformations into (1.1), after some steps we get 

I A ; N )  = [ A } x  x laiJiMi;i)leLJ;M:; N-i)(elJ;(M:laj)(a,JiMi,a;lA).  (A3) 
i oiJ,M,n:,<J:Mrc 

Here the wavefunctions of subsystems still depend on the projections of angular momenta. 
The formalism of atomic theory allows one to factorize out that dependence analytically (as 
done, for example, in [28]), so that it does enter the final expressions. namely 
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where 

and [. ’ ’ ] is a Clebsch-Gordan coefficient. 
Theexpression(A4)leads us to the functions (A6), which are similar to the functions of 

coupled momenta of two shells in the theory of an atom (see [ZS]); the expansion coefficients 
(A5) are commonly found by direct methods based upon the energy minimum principle, 
therefore the complexity of their expressions is only of minor importance. 

When the Hamiltonian acts only upon separate electrons, we can always formally write 

(A7) 

Here H, is the part of the complete Hamiltonian that acts only upon the eiectrons of 
the subsystem with non-primed parameters (the atom). The Ha, is an analogous term for 
the primed subsystem (environment), and the thiid term Ha, is the rest of Hamiltonian, 
where electrons of both primed and non-primed subsystems are acted upon. The last term 
corresponds to the matrix elements of hybridization (hopping, t). 

The energy operator (A7) is scalar in angular momentum space (denoted later by the 
superscript (0)). Therefore an application of the Wigner-ECkart theorem in the hasis of 
functions (A6) yields (see, for example, [28]) for the atomic part 

(bjJjfiJ:J‘M’; j .  N I H ~ o ) l a i J ; e j J ~ J M ;  i ,  N )  

H = H,+ Ha,+ H d .  

[ Jj J;’ J ]  [ Jj J i  J ’ ]  
M; Mi M MjM,!M’ 

= 6(i ,  j)S(f;’Jj’Mj,  e i J / M ; ) J ( J M ,  J’M’)(b;J;; iIIH~o)lla;Ji; i) (AS) 

i.e. the submatrix element ( 11 11 ) common in atomic physics is obtained, with additional 
Kronecker symbols diagonalizing all the supplementary characteristics. A similar expression 
is also true for the environment part: 

( b j J j f ~ J ~ J ’ M ‘ ;  j ,  NIHi?laiJiejJ:JM; i, N )  = S ( i ,  j)S(bjJjMj,aiJ;Mr) 

6 ( J M ,  J’M’)(filJ:; N- i l lH~?’ l [e j J~;  N - i ) .  (AS) 

The expression for the hopping matrix element is more complex, although the Wigner- 
Eckart theorem yields here 6 ( J M ,  J’M’), also. The approximation usually made here is 
based upon energy considerations. It is assumed that the hopping decreases rapidly when 
more than one electron participates in it. So for the hopping of a single-electron matrix 
element we get 

(bjJjf;’JiJ‘M’; j , N I H y l a i J i e ; J I J M  i ,  N) = S ( i , j &  l)S(JM, J‘M’) 

x (bjJj&!JiJ; j , N I I H p l l a i J i e j J ; i ,  N ) .  (-410) 
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